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Abstract-Calculation of a three-dimensional turbulent flow of a jet in a crossflow using a multiple-time- 
scale turbulence model is presented. The turbulence in the forward region of the jet is in a stronger 
non-equilibrium state than that in the wake region of the jet, while the turbulence level in the wake region 
is higher than that in the front region. The calculated flow and the concentration fields are in very good 
agreement with the measured data, and it indicates that the turbulent transport of mass, concentration 
and momentum is strongly governed by the non-equilibrium turbuien~e. The capability of the multiple- 

time-scale turbulence model to resolve the non-equilibrium turbulence field is also discussed. 

INTRODUCTION 

JETS IN crossflows can be found in a number of engin- 
eering applications. For example, in gas turbine com- 
bustors, circumferentially dist~buted jets are used to 
ensure correct combustion in the flame zone and then 
to dilute the hot gas entering the turbine. Various 
experimental and numerical investigations of jets in 
crossflows have been made to better understand tur- 
bulent flows in such engineering applications. Com- 
pilations of various experimental investigations ofjets 
in crossflows can be found in Crabb et al. [l] and 
Khan [2] and that of numerical investigations can be 
found in Claus and Vanka [3]. 

It can be found in ref. [3] that the numerical results 
obtained by various investigators using k-8 turbulence 
models exhibit improved comparison with the mea- 
sured data in some parts of the flow domain and worse 
agreement with the measured data in other parts as 
the mesh is refined. Claus and Vanka 131 carried out a 
grid independence study of a row of jets in a crossBow 
and showed that the deteriorated comparison is 
caused by the inability of the k--E turbulence models 
to describe the complex turbulence field. In previous 
numerical simulations, the upstream region of the jet 
was excluded from the computational domain. Andre- 
opoulos [4] showed, however, that the jet and the 
crossflow interact strongly with each other at the jet 
exit and that the influence is propagated toward the 
upstream region of the jet. The deteriorated numerical 
results can thus also be caused by the numerical 
models which cannot fully account for the strong 
interaction at the jet exit. In the present study. the 
boundary for the circular jet is located at one diameter 
upstream of the jet exit so that the strong interaction 
at the jet exit is also accurately simulated. 

Numerical results for various complex turbulent 

flows (e.g. turbulent flows subjected to extra strains 
caused by streamline curvature, interaction of mul- 
tiple number of shear layers, and shock wave-bound- 
ary layer interactions) obtained using two-equation 
turbulence models, algebraic Reynolds stress tur- 
bulence models (ARSM) and Reynolds stress tur- 
bulence models (RSM) show that these turbulence 
models cannot accurately describe the turbulence 
fields of various complex turbulent Rows [5]. One 
common inability of the two-equation turbulence 
models, ARSM and RSM, is that these turbulence 
models cannot account for ‘non-equilibrium tur- 
bulence’ due to the use of a single time scale to describe 
both the turbulent transport and the dissipation of 
the turbulent kinetic energy. The ‘non-equilibrium 
turbulence’ is explained in the ‘Analysis’ section. On 
the other hand, it can be seen in refs. [6-81 and the 
references cited therein that the numerical results for 
various complex turbulent flows obtained using the 
multiple-time-scale turbulence model (hereafter 
abbreviated as the MS turbulence model) are in as 
good agreement with the measured data as those 
obtained using an optimized k--E, ARSM, or RSM 
turbulence model for each flow case. The capability 
of the MS turbulence model to solve widely different 
complex turbulent flows is attributed to its capability 
to resolve the non-equilibrium turbulence. 

The Reynolds averaged Navier-Stokes equations, 
the concentration equation, and the turbulence equa- 
tions are solved by a finite volume method that incor- 
porates a pressure-staggered mesh and a partial 
differential equation for incremental pressure [9]. 
Details of the numerical method and calculations of a 
three-dimensional lid-driven cavity flow and a laminar 
flow through a 90”-bend square duct can be found in 
ref. 191. It is shown in the reference that the present 
method yields a grid independent solution for the 



2358 S.-W. Kohl and T. .I. BFNSON 

P 
PC 
ui 
UC 

NOMENCLATURE 

normalized concentration 
model constants for +, equation (i = 1.3) 
model constants for 8, equation (i = 1, 3) 
eddy viscosity coefficient 
constant coefficient ( = 0.09) 
diameter of circular jet 
turbulent kinetic energy (k = k, +k,) 
turbulent kinetic energy in production 
range 
turbulent kinetic energy in dissipation 
range 
pressure 
production rate 
time averaged velocity (= {u, v, w}) 
free-stream velocity of crossflow 

Y jet velocity averaged across jet cross- 
section 

-yI spatial coordinates ( = {s, J, ~1) 
).+ wall coordinate based on friction velocity. 

Greek symbols 

$’ energy transfer rate 
Et dissipation rate 

/1 molecular viscosity 

&I molecular diffusivity 

fit turbulent viscosity 

P density 

bd turbulent Schmidt number 

fl< turbulent Prandtl number for i-equation, 

i = {k,, ~~3 k,, E,}. 

separated three-dimensional curved duct flow with as 
small as 68 x 18 x 33 grid points and that the numeri- 
cal results are in excellent agreement with the mea- 
sured data. 

ANALYSIS 

The anisotropy of the turbulence is the most easily 
detectable phenomenon in a measurement of a tur- 
bulent flow, thus, it was conceived that the poor 
capability of the two-equation turbulence models to 
resolve complex turbulent flows is attributed to the 
inability of the turbulence models to account for the 
anisotropy of the turbulence. The emphasis was thus 
laid upon improving the ARSM and the RSM. A 
number of numerical investigations carried out during 
the last one-and-a-half decades show that the ARSM 
and RSM still cannot accurately predict the tur- 
bulence phenomena occurring in various flows unless 
the pressure-strain rate correlation is optimized for 
each flow [7, 81. 

A careful examination of semi-empirical data (theo- 
retically derived data from a set of measured data) 
reveals that the non-equilibrium turbulence also in- 
fluences the developments of the mean flow field and 
the turbulence field. Here, the ‘non-equiiib~um tur- 
bulence’ represents the state of a turbufence field in 
which P,/E, varies rapidly in space so that the shape 
and the frequency domain of the spectra1 density var- 
ies widely in space. The spectral density curves shown 
in Fig. 1 are constructed based on the measured data 
of Klebanoff [IO] and Wygnanski and Fiedler [I 11. It 
can be seen in Fig. 1 that the energy-containing large 
eddies generated by the instability of the mean fluid 
motion are characterized by low frequency and the 
fine scale eddies in the dissipation ,range are char- 
acterized by high frequency, thus the cascade process 
of the turbulent kinetic energy is also implicitly 
described in the figure. The influence of the non- 

equilib~um turbulence and the capability of the MS 
turbulence model to resolve the non-equilibria tur- 
bulence phenomena is described below. 

The convection-diffusion equations of the MS tur- 
bulence models describe the physically observed tur- 
bulence phenomena most naturally in the sense that 
the turbulent transport of mass and momentum is 
described using the time scale of large eddies and the 
dissipation rate is described using the time scale of 
fine-scale eddies 16-8, 121. The turbulent kinetic 
energy and the energy transfer rate equations for 
energy containing large eddies are given as 

K1 
K 

kp= jz_,EdK, kt=j;+EdK 

FIG. 1. Spectral density for non-equilibrium turbulent flows, 
A : maximum shear location in a circular jet (PJe, > 1) [l I], 
B: equilibrium region (P,/a, % l), C: free stream region 

of a boundary layer flow (P, % 0) [lo]. 
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= f (C,lP,’ + C,,P,E, - Cp3EpZ) (2) 
P 

where the production rate (PJ is given as 

and repeated indices imply summation over the index 
unless otherwise stated. The turbulent kinetic energy 
and the dissipation rate equations for fine scale eddies 
are given as 

and the eddy viscosity is given as 

k2 

pt = pcpfEp. 
(5) 

The turbulence model constants are given as ; 
cr kP = 0.75, cri., = 0.75, 

a&P 
= 1.15, act = 1.15, 

C p, = 0.21, 
CP2 = 1.24, 

CP3 
= 1.84, c,, = 0.29, 

et2 = 1.28, and cg = 1.66. 
The capability of the MS turbulence model to 

resolve the non-equilibrium turbulence depends 
largely on the load functions of the sp and E, equations 
and the way the turbulence model constants are estab- 
lished. The load functions of the sp and E, equations 
are obtained from a physical dimensional analysis 
[6], and the establishment of the model constants are 
based on the assumptions that the turbulence field of 
a uniformly sheared flow can approach an asymptotic 
state in which PJE* becomes a constant and that the 
ratio of E,/E,, depends on the ratio of PJE~. The first 
assumption that such an asymptotic state can exist is 
shown in Tavoularis and Karnik [13]. In such asymp- 
totic states of uniformly sheared flows, the diffusion 
term vanishes, and the asymptotic ratio of k,/k, can 
be obtained by dividing equation (1) by equation (3), 
i.e. 

(6) 

It can be seen in equation (6) that the existence of 
the asymptotic ratio of k,/k, depends on the real- 
izability of the second assumption that the ratio of 
E,/E~ depends on the ratio of P,/E,. The second assump- 

tion can be verified by numerical results posterily, or 
it can be verified indirectly by comparing the MS 
eddy viscosity equation with that of the generalized 
algebraic stress turbulence models [14-l 61. 

The semi-empirical c, for a plane jet obtained by 
Rodi [14] and the c,, curves used in the generalized 
algebraic stress turbulence models of Launder [ 151 
and Kim and Chen [16] are shown in Fig. 2. It can be 
seen in the figure that c,, is decreased as P,/E, is 
increased, and cP is increased as P,/E, is decreased. The 
eddy viscosity equation, equation (5), can be rewritten 
in a form comparable with that of the generalized 
algebraic stress turbulence models, i.e. 

where c,, = c,,~(E,/E,) and EJE~ is a function of PJE, as 
shown in Fig. 2, thus the second assumption is justified 
within the context of the generalized algebraic stress 
turbulence models. It can be seen in equation (7) that 
the spatially varying eddy viscosity coefficient depends 
on the local non-equilibrium turbulence. As a remark, 
the generalized algebraic stress turbulence models 
yield accurate numerical results for shear layers when 
used in boundary layer flow solvers. The use of these 
turbulence models in elliptic (two-dimensional) flow 
solvers does not, however, easily yield a converged 
solution due to a severe interpolation used in the 
c, function. Furthermore, the generalized algebraic 
stress turbulence models lack many features of the 
MS turbulence model. 

The three non-equilibrium turbulence levels (points 
A, B, and C) imbedded into the MS turbulence equa- 
tion are also shown in Fig. 2. The measured data that 
corresponds to the point A (i.e. PJE, = 1.5) can be 
found in Tavoularis and Karnik [13]. For point A, 

3 r L 
Ptanelet [21] 
Launder [22] 
Kim and Chen [23] 
MS turbutence modet [S] 

I I I 
0 1 2 

P&r 

FIG. 2. c,/c,,r (= E&J profiles, A : PJE, > 1, B : Pr/ct z 1, C : 
P, z 0. 
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the value of E,/E~ zz 0.95 can be estimated from Fig. 2 
and equation (6) yields k,/k, e 9.0. For turbulent 
flows in an equilibrium state (point H), P, = E,, and 
aP has to be equal to both of them to maintain the 

equilib~um state. In this case. equation (6) becomes 
indeterminate; and the ratio of k&k, z 4.0 can be 

obtained from a near-wall analysis of turbulent flows 
in equilibrium state [6]. In the free stream region 

of turbulent flows (point C), the production rate 

vanishes. In this case, the ratio of E,/E~ x 2.5 can 
be estimated from Fig. 2 and equation (6) yields 

k&k ‘5, 0.7. The three ratios of k,/k, obtained in the 

analysis show that (k~~k~~* > (k~~k~~~ > (k~~k~)~. The 
inlplicat~on of this inequality is also illustrated in Fig. 

I, where the frequency domain is divided into two 
parts by a simplified split spectrum [ci, 121. It can be 

seen in the figure that the ratio ofk,/k,is determined by 
the shape and the frequency domain of each spectral 

density curve and that the variation of k&k, is in 
agreement with the theoretical analysis. 

Calculations of various boundary layer flows using 
the MS turbulence model always reproduce the 
imbedded non-equilibrium turbulence states. For 

highly complex turbulent flows, large eddies (char- 
acterized by a large value of k,/k,) generated in the 

upstream region are convected in the downstream 
direction. In such downstream regions, the relation- 
ship between PJs, and E,/c~ is influenced by the con- 
vected eddies and the numerical results exhibit the 

trend of imbedded non-equilibrium turbulence. 
The convection~iffusjon equation for the con- 

centration is given as 

where ud = 0.75 is used in the present study. Due 

to the strong large eddy mixing, the molecular diffusi- 
vity can be ignored or formally approximated as 
pJ = F/G* ; and neither of the approximations influ- 

ence the numerical results significantly. In the exper- 
iment [l], the concentration field was measured by 

injecting helium gas (He) into the circular jet. The 
concentration of the helium is one percent of the air- 
helium mixture at the jet inlet, and hence the con- 
centration equation, equation (8) is solved uncoupled 
from the momentum equations. 

NUMERICAL RESULTS 

The circular jet in a uniform crossflow [1] con- 
sidered in the present study is schematically shown 
in Fig. 3 where D = 0.0254 m, U, = 12 m s-’ and 
W, = 27.6 m s- ‘. The computational domain is also 
described in the figure and {x, y, Z) = (0, 0, 0) refers 
to the center of the jet exit. The north (v = 3. I I) plane) 
and top (5 = 7.50 plane) boundaries are located 
sufficiently far away from the jet exit so that the 
numerical results near the jet exit are not significantly 
influenced by the far field boundary conditions. The 

7.5 D 

1. 
1.0 D 

f- 

Wj, He 

FE. 3. Nomenclature and computational domain for a 
circular jet in crossfiow. 

symmetric half of the flow domain is discretized by 
148 x 61 x 94 grid points in X-, y-, and z-coordinate 

directions, respectively. The body-fitted grid near the 
jet exit is shown in Fig. 4. The smallest mesh size 
in the direction normal to the wall is 0.6 x 10e4 m 
(_r” * I .5 based on the inlet boundary conditions of 
the jet) and this mesh size is su~ciently small to 
resolve the near-wall turbulence field in the vicinity of 
the jet exit. The largest mesh size used near the far field 

boundaries is approximately half of the jet diameter. 
The inlet boundary conditions for the crossflow are 

obtained from measured data for a fully developed 

(b) 

(a) 
FE. 4. Mesh in the vicinity of jet exit, (a) top view, 

(b) perspective view. 
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boundary layer Aow over a flat plate [lo]. The non- 
dimensional velocity and the turbulent kinetic energy 
profiles are scaled to yield a boundary layer thickness 
of 0.005 m at the inlet boundary. The ratios of k,/k, 
and &r/e, are estimated based on the ratio of Pi/c, [6]. 
The no-slip boundary condition for velocities, van- 
ishing gradient for concentration, and vanishing tur- 
bulent kinetic energy are prescribed at the solid wall 
boundary. A vanishing gradient boundary condition 
is used for all flow variables at the exit boundary 
(x = 1 l.lD plane) and on the symmetry boundary 
(y = 0 plane). The free stream boundary condition is 
used on the north and the top boundaries. A fully 
developed pipe flow and constant concentration 
(c = 1.0) conditions are prescribed at the jet inlet 
boundary. The near-wall turbulence is described by a 
‘partially low Reynolds number’ near-wall turbulence 
model [17]. The converged solution is obtained in 
approximately 1200 iterations, and the imbalances of 
the mass and concentration leaving the flow domain 
with respect to those entering the flow domain are less 
than 0.0025% and 0.95%, respectively. 

The contour plots of the jet velocity, the pressure, 
and the total pressure at the jet exit are shown in Fig. 
5, where the increments between the contour lines are 
the same for each contour plot. It can be seen in the 
figure that the jet velocity, the static pressure, and the 
total pressure vary widely across the cross-section. In 
various previous numerical calculations of jets in 
crossflows [3], either a constant vertical velocity or a 
constant total pressure was prescribed at the jet exit. 
The present numerical results, however, show that a 
significant amount of uncertainty can be caused by 
the use of either of these boundary conditions at the 
jet exit. 

The calculated velocity vectors, pressure, turbulent 
kinetic energy, P,/E~, E,/E~ and k,/k, are shown in Fig. 
6. The velocity vector and the pressure contour plots 
show that the crossflow is decelerated rapidly by the 
jet and thus the pressure is increased in the forward 
region of the jet. Otherwise, these plots do not show 
that any significant phenomena occur in the forward 
region. The complex P,Iel and E,/E, contours show, 
however, that the turbulence field is experiencing an 
enormous evolution in the forward region and that 
the peak non-equilibrium state occurs along the inter- 
face of the jet and the crossflow. The turbulent kinetic 
energy in the wake region of the jet is far greater 
than that in the forward region. The turbulence in 
the forward region is, however, in a stronger non- 
equilibrium state than that in the wake region. These 
results indicate that the strength of non-equilibrium 
turbulence does not necessarily depend on the tur- 
bulence intensity. It takes a while for large eddies to 
cascade to smaller eddies. The large ratio of k&k, in 
the wake region of the jet is caused by the large eddies 
convected from the upstream region and those gen- 
erated in the wake region. 

The calculated vertical velocity profiles in the vicin- 
ity of the jet exit are compared with the measured data 

(4 

0)) 

(cl 

FIG. 5. Contour plots of the flow field at the jet exit, (a) jet 
velocity, w/W,, (b) pressure, p/O.Sp@‘f, (cf total pressure 

fp+0.5pwZ)/0.5pW~. 

in Fig. 7. The under-predicted peak vertical velocity 
at z/D = 1.35 is caused by the coarse grid inaccuracy ; 
otherwise, the calculated vertical velocity profiles are 
in very good agreement with the measured data. 

It is shown in Fig. 8 that the calculated tangential 
velocity profiles along the x-coordinate direction on 
the symmetry plane are in good agreement with the 
measured data. The reversed flow behind the jet indi- 
cate that the development of the tangential velocity 
along the crossflow direction is similar to that of the 
flow over a circular cylinder. The u-velocity in front 
of the jet is not, however, brought to zero due to the 
compliance of the jet. 

The calculated turbulent kinetic energy distribution 
along the x-axis of the symmetry plane at z/D = 0.75 
is compared with the measured data in Fig. 9. It can 
be seen in the figure that the trend of the turbulent 
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(b) 

(f-9 

FIG. 6. Flow and turbulence fields on the symmetry plane, (a) velocity vector, (b) pressure. p/O.Spb’& 
(c) turbulent kinetic energy (k/OSp@,), (d) PI/t-:,, (e) E&,. (f) k,!k,. 

kinetic energy distribution is in excellent agreement 
with the measured data even though the turbulence 
intensity is under-predicted. 

The calculated concentration profiles at three 
downstream locations on the symmetry plane are 
shown in Fig. 10. The shape and the peak locations 
of the calculated concent~dtion profiles are in very 
good agreement with the measured data. The slightly 
smaller magnitude of the concentration is caused by 
the coarse grid inaccuracy in the far downstream 
region. 

The calculated u-velocity, concentration, and tur- 

bulent kinetic energy contours at xJD = 8 are shown 
in Figs. 11(a)-(c), respectively. It can be found in 
Crabb et al. [l] that the present numerical results are 
in good agreement with the experimentally obtained 
contour plots. The slight difference between the cal- 
culated and the measured u-velocity contour plots in 
the vicinity of z/D = 4.5 is again att~buted to the 
coarse grid inaccuracy in the region. Note that the 
peak concentration occurs in the region where u-vel- 
ocity is minimum and that the concentration contour 
plot exhibits a strong similarity with the turbulent 
kinetic energy contour plot. This trend is in excellent 
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0.00 

-0.25 -1-I 
-2 -1 0 1 2 3 4 5 6 

x/D 

-0.25 -;I 
-2 -1 0 1 2 3 4 5 6 

x/D 

FIG. 7. Vertical velocity (w) profiles on the symmetry plane, 
(a) z/D = 0.25, (b) z/D = 0.75, (c) z/D = 1.35. 

agreement with the experimentally observed dis- 
tributions of the concentration and the turbulent kin- 
etic energy and it indicates that the turbulent transport 
of the concentration is significantly different from that 
of the mass and momentum. 

The three-dimensional particle trajectories are 
shown in Fig. 12. It can be seen in the figure that the 
fluid particles passing near the jet exit are most easily 

A.” 

1.5 

0 

% 1.0 1 

0.5 

0.0 

-0.5 A- 
-2 

1 I I 
-1 0 i i 3 4 5 

6 

c 
x/D 

FIG. 8. Tangential velocity (u) profiles on the symmetry 
plane, (a) z/D = 0.75, (b) z/D = 1.35. 

entrained to the jet. It is also shown in the figure 
that the fluid particles near the jet edge carry less 
momentum and hence these particles are quickly 
entrained to the helical vortices in the wake region of 
the jet. The particle trajectories show that the large 
eddy mixing occurs in the wide region of the jet edge 

-2 -1 0 1 2 3 4 5 6 
x/D 

FIG. 9. Turbulent kinetic energy profile on the symmetry 
plane at z/D = 0.75. 
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Fro. 10. Conc~ntmtion profiles at downstream locations on 
the symmetry plane, (a) x/B = 4, (b) x/D = 6. (c) s/D = 8. 

Fro. I I. Contour plots of zi-velocity, coIlcent~dtion, and 
turbulent kinetic energy, (a) u-velocity, (b) concentration. 

(c) turbulent kinetic energy. 

and that the fluid particles in the center region of the 
jet do not mix easily with the crossflow. 

CONCLUSIONS AND DISCUSSION 

It is shown that a strong non-equi~ibriun~ tur- 

bulence field is characterized by the shape and the 
frequency domain of the spectral density that varies 
widely in space. The infucnce of the non-equilibrium 

turhulencc on the developments ofthe mean fluid Row 
and the turbulence field can be sensed only through 
semi-empirical data. The influence of the non-cqui- 

librium turbulence is thus more difficult to recognize 
than that caused by the turbulence intensity or the 
anisotropy of turbuiencc. The significantly improved 

numerical results for a wide class of complex turbulent 

flows obtained using the multiple-time-scale tur- 
bulence model indicate that the turbulent transport 

of mass, momentum, and concentration depends 
strongly on the non-equilibrium turbulence and that 

the ~nult~ple-time-s~dlc turbulence model correctly 
resolves the non-equilibrjun~ turbulence phenornem~. 

Numerical results for the circular jet in a crosst‘low 
show that the jet and the crossflow interact very 

strongly with each other in the forward region of 
the jet and that the interaction creates a strong non- 
equilibrium turbulence field in the forward region of 
the jet. The strong interaction between the jet and the 
crossflow at the jet exit also influences the How and 
the turbulence fields in the upstream region of the 
jet. This result suggests that the upstream region of 
the circular jet needs to be included in the com- 
putational domain in order to obtain accurate numcri- 

cat results or to assess the predictive capability of a 

turbulence model. The calculated velocity, con- 
centration, and turbulence fields arc in good agrcc- 
ment with the measured data. It is discussed in Crabb 

er rrl. [I] that the weak vortex shedding does not 
influence the mean fluid flow signi~cantly. The good 
comparison between the numerical results and the 

Fro. 12. Three-dimensional particle trajectories. 
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measured data is also in agreement with such an 
observation. The calculated tangential velocity, con- 

centration, and turbulent kinetic energy contours at 
a downstream location show that the peak con- 

*, 

centration occurs where the tangential velocity be- 
comes local minimum and that the concentration field 9. 
exhibits a close resemblance to the turbulence field. 
This trend is in excellent agreement with that observed 10. 
in the experiment. 
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CALCUL DUN JET CIRCULAIRE EN COURANT CROISE AVEC UN MODELE DE 
TURBULENCE A ECHELLE DE TEMPS MULTIPLE 

R&urn&On presente le calcul de l’ecoulement turbulent tridimensionnel d’un jet dans un courant croisk 

avec un modele de turbulence a Cchelle de temps multiple. La turbulence dans la region amont du jet est 
en ttat de desequilibre plus prononce que dans la rtgion de sillage, tandis que le niveau de turbulence dans 
le sillage est plus eleve. L’ecoulement calcule ainsi que le champ de concentration sont en trts bon accord 
avec les mesures experimentales et cela indique que le transport turbulent de masse, de concentration et de 
quantite de mouvement est fortement gouverne par la turbulence hors d’equilibre. L’aptitude du modele 
de turbulence a echelle de temps multiple a resoudre le champ de turbulence hors-equilibre est aussi 

discutee. 

BERECHNUNG EINES QUER ANGESTROMTEN KREISFORMIGEN STRAHLS 
MITTELS EINES TURBULENZMODELLS MIT MEHRFACHER ZEITSKALIERUNG 

Zusammenfassung-Es wird die Berechnung der dreidimensionalen turbulenten Strdmung in einem quer 
angestriimten Strahl vorgestellt, bei der ein Turbulenzmodell mit mehrfacher Zeitskalierung verwendet 
wird. Die Turbulenz im Anstriimbereich des Strahls ist starker im Nichtgleichgewichtszustand als diejenige 
im Abstriimbcreich wahrend der Turbulenzgrad im Abstrijmbereich gr6Ber ist als derjenige an der Vor- 
derseite. Die berechnete Striimung und das Konzentrationsfeld stimmen gut mit Versuchsdaten iiberein, 
und es zeigt sich, dal3 der turbulente Massen-, Konzentrations- und Impulstransport stark von der Nicht- 
gleichgewichtsturbulenz beeinfluBt wird. Es wird zusatzlich die Miiglichkeit diskutiert, mit Hilfe eines 
Turbulenzmodells mit mehrfacher Zeitskalierung das Nichtgleichgewichts-Turbulenz-Feld zu berechnen. 

PACYET KPYl-JIOB CTPYH HPM HOl-IEPEcJHOM OBTEKAHHH C MClTOJIb30BAHHEM 
MOAEJHi TYPEYJIEHTHOCTH C MHOmECTBEHHbIMR BPEMEHHbIMH 

MACIIITABAMM 

~HOT&I~~~HBOJJ&%TCSI pamreT TpeXMepHOfi Typ6yneHTHOfi c~pyH np~ nonepeqHoM o6TeKamH c 

HCnOnb30BaH‘reM MOflenW Typ6yneHTHOCTH C MHOWZCTBeHHbIMU BpeMeHHbIMH Macmra6aMri.Ha nepe& 
HCM y'iaCTKe CTpyH Typ6yJreHTHoCrb RBXXeTCIl6onee HepaBHOBecHOii, YeM B o6nacrw cnena, B TO BpeM,, 
XaX ypoBeHb Typ6yneHTHOCTIi B o6name cnena Bbme,qeM Ha nepeweM ~acrxe.PaccwiTamible nom 

Te'feHBll H KOIiIleHTpWifi O'ieHb XOpOrUO CO~JIaCyEOTC%l C .UaHHbIMH A3MepHti,4TO CBH~eTWb‘ZTByeT 0 

CtiJlbHOii 3PBUCIIMOCTn TypCiynerfrrioro nepeHocaMaccbl,KOHqeHTpaWA U E,Mny,&Ca OTHepaBHOBeCHOti 

Typ6yJIeHTHOCTH. 06cyWWTCff BO3MOXCHoCTb OIIpeLIeJIeHHS HOJXll HepaBHOBeCHOti Typ6yJleHTHOCTB C 

noMonrbro npennaraeb4ofi Monena. 


